PHYSICAL REVIEW E 77, 061303 (2008)

Kinematics of densely flowing granular mixtures
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We measure the kinematics of segregating granular mixtures in dense free-surface boundary-layer flow in a
rotated drum. We find that in a segregating mixture, the different components move with roughly the same
velocities, except for a relatively small segregation velocity perpendicular to the direction of flow. On the other
hand, the mean variance of the velocities—often associated with a granular temperature—may differ for the
two components. In the majority of the high-density boundary layer, the difference is driven by relative particle
size and may be understood considering a geometrically motivated model. In the low-density region at the top
of the boundary layer, the difference is driven by relative particle mass, similar to observations in more

energetic systems.
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I. INTRODUCTION

Mixtures of macroscopic particles appear uncomplicated
by their very nature; the particles interact only through ap-
parently simple contact forces [1]. Yet the bulk material re-
sponse to external excitation is often difficult to predict. No-
tably, the local interactions often result in system-spanning
segregation patterns whose details are sensitive to subtle
changes in particle properties. For example, when particulate
mixtures are poured into a box, the components may segre-
gate either along the direction of the flow only or, addition-
ally, into stratified layers. The difference arises in part from
the frictional properties of the particles [2]. Alternatively,
when rotated in circular drums, most mixtures tend to segre-
gate into circularly symmetric patterns, but when the par-
ticles differ in size, they may segregate into radial stripes
[3,4] (Fig. 1).

To this point, there has been no causal relationship found
between the particle properties (e.g., size, density) and the
kinematics of bulk behavior (e.g., velocity, velocity variance)
that might give rise to the difference in the segregation pat-
terns. Such a link could aid in the development of a con-
tinuum model that has predictive power for segregation be-
haviors in these systems.

There have been some detailed studies on the dynamics of
components in more sparse and energetic granular mixtures.
Specifically, Garzé and Dufty [5] investigated the cooling
process of a granular mixture using Enskog kinetic theory
and found that the components may have different granular
temperatures—analogous to the kinetic energy of the veloc-
ity variances. They found that the ratio of the granular tem-
peratures of the components depended on the relative par-
ticle mass, relative number density, and restitution
coefficient. Other experimental and computational research
has verified what is called by some this “energy equipartition
breakdown” for a variety of mixtures [6-9]. The details of
how the relative granular temperature depends on system
parameters varies from one system to the next. In all cases,
the granular temperature ratio appears inversely related to
particle mass (size and density). Some theoretical and com-
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putational studies point toward an additional dependence on
the restitution coefficient and relative particle number den-
sity [5-7]. Feitosa and Menon [8] studied the problem ex-
perimentally for mixtures differing only in density and found
no dependence on the restitution coefficient or number
density—i.e., that the variability in their systems depended
only on mass (i.e., material density). Wildman and Parker [9]
investigated this question for mixtures differing only in size
and found a dependence of relative granular temperatures
both on the relative mass (i.e., in this case, size) and on the
relative number density of the components.

Here, we investigate how the particle properties of com-
ponents in a dense gravity-driven granular mixture affect the

(h)

FIG. 1. (a) A sketch of the experiment, a rotating drum halfway
filled with beads. At any time, most beads rotate with the drum (a)
while a thin layer (b) slides quickly over the rest. (b)—(g) Images
taken as indicated in (a) of (b)—(d) 3-mm (dark) and 2-mm (light)
plastic beads; (e)—(g) 2-mm steel (dark) and plastic (light) beads,
first mixed, then rotated in a drum after (b),(e) 1/4 rot; (c),(f) 3/4
rot; and (d),(g) =10 rot. (h),(i) Pictures of the whole drum (h)
before and (i) after segregation typical of mixtures rotated slowly in
a half-filled drum. (j) An image of the steady segregation pattern
with the drum filled ~55% with a mixture of 2- and 3-mm plastic
beads.
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kinematic behaviors of the particles relative to those of the
mixture. Experimentally, we query how the type of particu-
late mixture (different density versus different size) affects
the kinematics of dense free-surface boundary-layer flow
through experimental measurements of two differently seg-
regating mixtures in a rotated drum. We find the most note-
worthy differences appear not in the segregation velocities,
but in the average variance of the velocities of the compo-
nents in the mixture. In contrast to the results from more
energetic mixtures described above, this difference appears
driven by size alone in most of the boundary layer. Specifi-
cally, particles smaller than other components in the mixture
have a higher mean velocity variance than their neighboring
larger counterparts; particles in mixtures that differ only in
density have similar velocity variances to their neighbors of
different density. We further test this computationally for
mixtures varying in both size and density, and the depen-
dence of the relative velocity variance on relative particle
size (not density) appears to hold.

In contrast, for a very narrow low-density region at the
top of the flowing layer, we find that the velocity variance
differences depend on relative mass (dependent on both size
and density) of the particles, similar to results in energetic
sparse mixtures described above [5-9].

II. EXPERIMENTS

We experimentally study two types of mixtures: one
where the particles differ only in density (plastic and steel
beads all of diameter d=2 mm), the other where the par-
ticles differ only in size (plastic beads whose diameters are
d=2 and 3 mm) [10]. The contribution of each component to
the mixture by volume (V) is varied according to the follow-
ing: V;:V,=100:0, 75:25, 50:50, 25:75, and 0:100. The re-
sults for single-component systems have been presented in
detail in previous articles (Refs. [11,12]), so here we prima-
rily discuss them qualitatively for comparison with our most
recent mixture results.

We fill a thin transparent circular drum (diameter D
~300 mm, thickness 7~8 mm, material, acrylic) halfway
with these mixtures. We rotate the drum at w=1 rpm, which
generates a thin flat flowing layer that is relatively uniform in
the x direction [see Fig. 1(a)] in the center of the drum.
While the drum rotates, we focus a high-resolution digital
camera on this region of the flowing layer, and once every
half rotation, we take 1024 images at 500 fps. We begin this
routine after z}-l rotation to avoid transients associated with
the initial flow of the particles in the drum. We repeat at
intervals of % rotation subsequently. All results shown repre-
sent the average of three sets of such experiments.

We begin the rotation when the beads are well mixed.
During the first half rotation of the drum, all beads enter the
flowing layer well mixed, as in Figs. 1(b), 1(e), and 1(h). As
commonly observed, the components quickly segregate—the
smaller (or alternatively, denser) beads sink in the flowing
layer, apparently in less than 1 rotation, Figs. 1(c), 1(f), and
1(1). At the fill level used (50%), the subsequent change is
limited to a further sharpening of the boundary between the
segregating components [13]. The segregation patterns in the
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FIG. 2. (Color online) Experimental results for the 50:50 mix-
ture of 2- and 3-mm plastic beads shown in Figs. 1(b)-1(d). (a) f, @,
fiAiz;, and f;A7; for the mixed state—i.e., for ~1/4 rot of the drum.
(b) The same after ~3/4 rot of the drum. (c) The same, ~10 rot,
where the system is in a steady state [27].

systems described in this paper reach a steady state after two
to three rotations, with a relatively constant fraction of larger
(or, alternatively, less dense) beads on the top of the flowing
layer [Figs. 1(d) and 1(g)].

For each experiment (i.e., each set of 1024 images), we
locate and track the beads from one image to the next. From

this, we calculate the mean volume fraction f(y) for each
component and for the mixture, as well as the mean veloci-
ties and velocity variances (velocity fluctuation correlations)
u(y), v(y), u'u’(y), v'v'(y), and u'v’(y) [14]. (Here and

henceforth, * refers to the quantity * averaged both in the x
direction and over the duration of a single set of images.)
Here, u and v are the instantaneous velocities parallel and
perpendicular to the average flow, u'=u—u and v'=v-0,
where, in terms of the component directions shown in Fig.
1(a), the velocity v=uX-vy. We also calculate the flux of
each component relative to the mixture, parallel and perpen-
dicular to the average flow: f,Ai;=f,(if;—ii,;) and f,AD;
=f{0,~0,,;,). Figure 2 shows the volume fractions, veloci-
ties, and fluxes for the 50:50 mixture of 2- and 3-mm plastic
beads— ‘before” [Fig. 2(a)], “during” [Fig. 2(b)], and “after”
[Fig. 2(c)] segregation.

The results for the mixed phase (solid lines in the plots)
are qualitatively similar to results for monodisperse systems
[11,12,15]: f,, is low near the free surface and increases
quickly to 50% within 4—6 mm (~2d, where d is the locally
averaged particle size); i,,;, is highest near the free surface

and decreases to zero within 5d—6d. The plots of f; for the
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FIG. 3. (Color online) Experimental results for the 50:50 mix-
ture of 2-mm plastic and 2-mm steel beads shown in Figs.
1(e)-1(g). (a) f, &, f:Ail;, and f,AD; for the mixed state—i.e., for
~1/4 rot of the drum. Au;=it;—it,,;, and Av;=0;—0,,;,, Where i
refers to each component. (b) The same after ~3/4 rot of the drum.
(c) The same, ~10 rot, where the system is in a steady state.

individual components (distinct symbols in the plots) reflect
the segregation apparent by eye. (The volume fraction of
large beads seems disproportionately low due to the presence
of the wall; we discuss this shortly.) Both &; and 0; are simi-
lar for both components at any given depth, though not iden-
tical, as is more apparent in the plots for the flux
(fAli;, f;A;). Initially, the smaller beads sink (with gravity)
perpendicular to the free surface, relative to the mixture, and
the larger beads rise. This difference vanishes quickly corre-
sponding to the quick segregation [Fig. 1(b) and 1(c)]. In
contrast, the fluxes parallel to the flowing layer (f;Ai;) show
no trend for the mixed state, though after segregation, the
large beads drift forward relative to small beads at the same

depth, except at the free surface (where f,,;, <40%).
Many of these details are similar for particulate mixtures

where the components differ in density only (Fig. 3): f,; is
low near the free surface and increases quickly to 50%,
though a bit farther from the free surface than for the 2- and
3-mm bead mixture. This extended low-density region is
most likely a result of two factors: First, the large difference
in particle mass means that collisions between the plastic and
steel beads near the surface can result in a projection of the
lighter (plastic) beads out of the bulk. Second, (compared to
a similar effect for the steel beads) the small ratio between
the weight of the plastic beads and air friction acting on these
beads once aloft slows the beads as they fall enough to main-
tain a relatively consistent sparse layer from settling to the
denser region below. As is the case for the 2- and 3-mm
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FIG. 4. (Color online) (a) W(y) and W(y) for the 50:50
mixture of 2- and 3-mm plastic beads (first two columns) and the
50:50 mixture of 2-mm plastic and steel beads (last two columns).
Results for the mixed state—i.e., for ~1/4 rot of the drum. (b) The
same after ~3/4 rot of the drum. (c) The same, ~10 rot, where
the system is in a steady state. The insets show the volume fraction
f for the mixed state and the individual components on linear-log
plots, showing that after 10 rot, for y>8 mm, the volume fraction
of the particles that segregate upwards (the 3-mm particles in the
first two columns and the plastic particles in the second two col-
umns) falls below 1%, representative of less than a single bead.

mixture, i,,;, is highest near the free surface and decreases to
zero within 5d—6d. In the plots of the individual compo-
nents, there are other similarities. Initially, the denser beads
sink (with gravity) perpendicular to the free surface, relative
to the mixture, and the less dense beads rise. Also, the mea-

surements for f;Air; are similar for both components for the
mixed state, and after segregation, the less dense beads drift
forward relative to the denser particles. In summary, for
these two types of mixtures, there are no qualitative differ-
ences between mean velocities and velocity fluxes for the
components relative to the mixture.

On the other hand, the behaviors of the mean velocity
variances u/u/(y) and v/v/(y) do qualitatively differ from
one type of mixture to the next (see Fig. 4). In the mixtures
of 2- and 3-mm beads, the mean variance of the velocities of
the smaller beads are greater than those of the larger particles
at any given depth. In contrast, the relative variance of the
plastic and steel beads depends on the region of the flowing
layer. Near the top, where the flow is energetic and sparse,
uju/(y) and v/v](y) are greater for the plastic beads than for

the steel beads. Lower in the layer, where f,, >0.4 and
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beads are in_enduring contact with neighboring particles,

‘u/(y) and v/v/(y) are nearly the same for the steel and
plastic beads. A possible exception to this rule is apparent for
deep regions, y>8 mm, after segregation—i.e., in Fig. 4(c)
where the concentration of particles that rise over the course
of the experiment is quite low [f3,,, in column 1 and fp,as,,»c
in column 3 of Fig. 4(c), included as linear-log plots in the
insets]. Where the volume fractions and the speeds are this
low, the results are representative of only a fraction of a
single particle. We include these points for completeness,
though we believe they are statistically insignificant and do
not affect our conclusions from these experiments: specifi-
cally, that the relative velocity variances of the components
in a densely flowing granular mixture depend only on rela-
tive size and not relative density.

In the dense part of the flow, the dependence of the ve-
locity variances u;u;(y) and v/v;(y) only on the size of the
particles relative to the mixture is likely due to geometric
constraints related to the nature of the flow, as described in
Ref. [12] for monodisperse systems. The essence of this
model is as follows. Particle movement in this dense flow is
primarily laminar in nature, where particles move in endur-
ing contact over neighboring layers of particles below them.
Velocity fluctuations are generated when beads must slide
around neighbors below or when the neighbors below push
them as they themselves slide around their neighbors. We
can extend this qualitatively to particles of different proper-
ties by noting that particles sliding over larger neighbors will
be jostled more than particles sliding over smaller particles.

Following the arguments in Ref. [12], we can model the
velocity fluctuations as sinusoidal variations in the velocity

of a relative frequency of i,,;/d and an amplitude that scales
as u,,, the average velocity of a layer of particles relative
to the neighboring layer below. Specifically,

urel,i =ﬁrel
+l’7relgu,i COS[(’/_[rel/d)t] and Urel,izﬁrel'fv,i COS[(ﬁrel/d)t_ ¢i]7
where &, ; and &, ; are proportionality constants and ¢; is the
phase difference between the “jostling” in each direction.
Following this model (see [12] for details) the velocity
fluctuation correlations (i.e., the mean velocity Variances)

Frd(m)(n)dy and ulul(y)
>N Vbd(r])yz(n)dn and the cross correlation u/v!(y)

—§u,,§,, ,COS [d(7) V()d 7. Here, y, is the depth at the bot-

tom of the flowing layer, () =dii/dz, and d(7) is the av-
erage diameter at depth y=7. When this model is fit to the
data for these mixtures, the results are in reasonable agree-
ment for the bulk dense granular flow, as shown in Fig. 5.
However, there is a narrow region at the top where the fit
works less well. This point at which the quality of the fit
degrades appears to correspond to a depth at which there is a

may be written v/ y)—g”’

§u1

change in the slope of f, approximately for f<0.4 (see Fig.
2). This is approximately the same critical value of f for the
plastic and steel beads: where f>0.4, u w'u'(y) and v'v'(y)
are approximately the same for the two components and
where f<0.4, u'u’(y) and v'v’(y) for the two components
diverge.

One explanation for this apparent change in behavior fol-
lows similar arguments as those posed in Refs. [11] and [12]:
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FIG. 5. (Color online) Fits of the geometric model described in
the text (solid lines) to the experimental data (points) for the (a)
25:75, (b) 50:50, and (c) 75:25 2- and 3-mm plastic bead mixture.
The solid circles are measured data points, and the lines are the
model fits. The first three columns show data and fits for the 2-mm
beads in the mixture; the latter three columns show data and fits for
the 3-mm beads in the mixture. The fitting parameters
[&,,&,,¢ (rad)] are (a) 2 mm (1.0,0.9,1.8), 3 mm (0.8,0.7,1.8); (b)
2 mm (1.0,0.8,1.8), 3 mm (0.8,0.6,1.8); (c) 2 mm (0.9,0.8,1.8), 3
mm (0.7,0.6,1.8). For the 2-mm plastic and steel bead mixture, the
results (not shown) are nearly the same for all beads for all percent-
ages: (&,,&,,¢)~(1.0,0.8,1.8).

there are two types of flow within this free-surface boundary
layer, one of dense laminar flow of enduring interparticle
contacts and a more energetic, sparse region where collisions
are more important for determining kinematic and kinetic
details. In the less dense region where particle-particle con-
tacts are not enduring and collisions become more important
than sliding contacts in momentum transfer, mass (rather
than size or density) should dominate the behavior of the
velocity fluctuations. To investigate this transition, we use
computational simulations so that both size and density may
be smoothly varied and the effect of mass isolated.

III. COMPUTATIONAL SIMULATIONS

To study these systems computationally, we use the dis-
crete (or distinct) element method (DEM), first proposed by
Cundall and Strack [16], whereby motions of every discrete
solid particle are tracked and a simple “soft sphere” force
law is used to describe particle-particle interactions. We use
the nonlinear force model that incorporates Hertzian contact
theory and material properties into the contact coefficients by
Tsuji et al. [17].

First, to understand the impact of the sidewall on the de-
tails described above, we examine results from a simulated
50:50 mixture of 2- and 3-mm particles rotated in a drum
(Fig. 6). The drum size is smaller than the physical experi-
ments (here D=72 mm) to reduce the computational time.
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FIG. 6. (Color online) Simulation results for a mixture of 2- and
3-mm beads rotated in a D=72 mm, r~8 mm drum at o
=16 rpm after ~1/4 rot [compare with Fig. 2(a)]. Results for (a)
the entire width of the mixer, (b) the front third of the mixer (most
comparable to experimental results), and (c) the middle third of the
mixer. The data included are indicated in the sketch at the bottom of
Fig. 6.

Accordingly, the rotational velocity is increased according to
scaling laws proposed by Taberlet et al. [18] so that w
~16 rpm. These results show that the larger particles are
crowded away from the sidewalls; that is, small particles
tend to be more highly concentrated against the side walls,
while larger particles are more highly concentrated in the gap
away from the sidewalls. This explains the disproportion-
ately low volume fraction of 3-mm particles in Figs.
2(a)-2(c) [19]. Nevertheless, the same trends in u(y),
u'u'(y), and v'v’(y) occur throughout the drum for both
components and the mixture, as might be expected for such a
narrow drum.

Next, we use the computational simulations to determine
how the velocity fluctuations depend on the mass, indepen-
dent of size, by varying the density of the particles relative to
one another. We use the same computational drum, but with
periodic boundaries rather than sidewalls, so that the anoma-
lous sidewall effects described above do not arise. We use
beads of 2 and 3 mm and vary the mass ratio M,=M3/M,
from =0.8 to 5.5. o

Figure 7 shows u/u;(y) and v/v;(y) for four values of M,:
from M,~0.8 [Fig. 7(a)] to M,=~2.7 [Fig. 7(d)]. The insets
show fi(y) and f,,;(y) for each case. Notably, at approxi-
mately 5 mm below the free surface f,,;, abruptly changes
slope as it nears its maximum value of approximately 0.6
[20]. Below a depth of 45 mm, u/u/(y) and v/v/(y) appear
independent of M, and the values of u;u/(y) and v/v;(y) for
small particles are greater than those for larger particles.
Closer to the free surface where the flow is less packed, the
relative values of u/u;(y) and v/v/(y) clearly vary with M,.
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FIG. 7. (Color online) Simulation results for velocity variances
of a mixture of 2- and 3-mm beads rotated ~1/4 rot. (a) M,
~0.8, (b) M,~1, (¢c) M,~1.73, and (d) M,~2.74.

In this region, the magnitudes of u/u/(y) and v/v;(y) are
greater for the lighter particles than the heavier particles, and

for M,=1 [Fig. 7(b)], u/u;(y) and v/v!(y) are approximately

equal for the two components. o _
To investigate this further, we sum u/u;(y) and v/v/(y)

for each species i—one might call this the kinematic tem-

perature Ty, =u/u;(y)+v/v(y). Then we calculate the ra-
tio of Ty for the two components for each mixture:
Tyinem.r=Trinem3! Trinem.n- The results are graphed in Fig. 8.

In the graph and inset in Fig. 8(a), two distinct regions are
evident. Below a depth of approximately 5 mm, T}, , iS
roughly independent of both the mass ratio of the particles
and the depth. This further supports the form of the geomet-
ric model described in the experiment section. With a bit of
algebra [21] one might show that the model predicts
Tkinem,,=(53’3+§i,3)/ (§i,2+§5,2), independent of depth. The
results shown in Fig. 5 indicate that this value should be
approximately 0.7, similar to that found for f>0.4 in these
simulations.

On the other hand, where the volume fraction is relatively
low (y<5 mm)—that is, where particles are no longer in

0 o
T2
£
>
4
0 1 2 3 0 2 4 6
(a) Tkinem,r (b) M,

FIG. 8. (Color online) Kinematic temperature ratio for mixtures
of 2- and 3-mm beads of varying mass ratios as indicated in the
plots. (a) The dependence of the temperature ratios on depths for
the five mixtures as indicated. (b) The dependence of the tempera-
ture ratio on the mass ratios for distinct depths as indicated in the
legend.
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enduring contact and collisions are more important for mo-
mentum transfer—177,,,,, - is inversely related to M, (and p,).
In fact, for a narrow range of depths (1.5 mm<y<3 mm)
corresponding to 0.1 < f< 0.4 the results for 7, correspond to
what one might expect from simple momentum conservation
arguments: for M,=1, Typep,=1; for M, <1, Tk,nem,>l

and for M,>1, Tklmm,,<1 The results in this region are
analogous to those obtained by Feitosa and Menon [22] for
more uniform shaken systems.

In summary, the relative mean velocities and fluxes of the
components of the different mixtures behave similarly. Dur-
ing segregation one species sinks in the direction perpen-
dicular to the average flow. This “sinking” has been ex-
plained through mechanisms such as buoyancy [23] for
particles that differ in density and kinetic sieving [24] for
particles that differ in size and is directly related to the ob-
served radial segregation in all systems, independent of mix-
ture. After this segregation has stabilized, the same species
that sinks perpendicular to the flow drifts backward parallel
to the flow. This has not been previously reported, although it
also appears to be common for all mixtures investigated. On
the other hand, the mean velocity variances of particle com-
ponents behave differently. The differences depend on how
the component properties compare with other components in
the mixture and also on the state of flow and associated in-
terparticle interactions. In the dense region of flow, the vari-
ances, or velocity fluctuations, scale (inversely) only with
size, not with density. In contrast, in the less dense region,
they scale (inversely) with mass (size and density). This re-
sult is similar to those observed in more energetic systems,
although there are additional effects reported such as that due
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to the coefficient of restitution and volume fraction effects
that were not investigated in the research reported here [5-9].

While not entirely intuitive, the difference in velocity
fluctuations in dense granular flow may be a first step toward
understanding the segregation differences in densely flowing
granular mixtures. The velocity fluctuations might quantify
an apparent fluidity difference mentioned by Jain et al. [4]
and subsequent system-scale segregation patterns. Galvin et
al. [6] demonstrated that in certain granular mixtures a dif-
ference in mean velocity fluctuations or variances manifests
itself as a segregation force.

Developing a predictive model for segregation behaviors
as they depend on different particle properties is important
for many natural applications. For example, in riverbeds the
formation and maintenance of gravel patches of relatively
uniform-sized particles suitable for fish habitat are among
important considerations for river restoration problems [25].
A significant annual expense for some river restoration
projects lies in gravel augmentation—and understanding of
the behavior of gravel as a function of its size may improve
the longevity and reduce the expense of these projects. In
debris flows, the largest boulders tend to gather toward the
front and likely are responsible for the most wear and dam-
age [26]. A better understanding and improved modeling of
the behavior of granular mixtures as they depend on their
components may aid in both environmental restoration and
disaster mitigation.
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